ZEROCONF INSIGHTS INTO SCOPING PROBLEMS

Erik Guttman
ZEROCONF WG chair
Sun Microsystems
What is the problem?

• Normally
 – Addresses are relatively stable
 – Names and addresses are unique within the network reachable by a host
 – Datagrams are routable

• We have broken these assumptions with ZEROCONF

• The solutions we have come up with have problems

• Consider
 – IPv4 link-local addresses
 – Link-local name resolution

See: http://www.spybeam.org/issues.html
Ideal Zeroconf Scenario

- Limited number of hosts
- Single link
- Name resolution and/or service discovery provides peer address
- Somewhat more volatile but still pretty stable, unambiguous forwarding, unambiguous names and addresses
Real Zeroconf Scenario

- **L3 issues**
 - Forwarding ambiguity (i3==i2, i2==i1a, etc)
 - Forwarding complexity (i3 is non-LL, i1a is LL)
 - Transitioning (DHCP vs. Zeroconf?)
 - Source address selection

- **L7 issues**
 - Addresses exposed
 - Interface info not used
 - Locators forwarded
 - Renumbering breaks apps
Name Resolution & Discovery Issues

- Scoped locator forwarding
 - Widely done (html &c)
 - resolution may be ambiguous or fail
 - LLMNR: respond per interface
 - RFC 3111: forward locators with scoping in mind (SLP for IPv6)

- IPv6 exposes address scopes via interface indexes – very hard in IPv4
- Existing apps will break in certain scenarios
Solutions and their problems

• **Always maintain a link-local address.**
 Only send LL to LL. But: Legacy interoperation fails, it exacerbates scoping problems and one can‘t turn it off.

• **Transition.** Use global address when possible. But: transition is complicated, leads to instability, forwarding rules become more complex.

• **Round robin resolution.** If at first you don‘t succeed… But: security implications, arbitrary.

• **Higher level ID based forwarding.** Use stable identifier, rediscover peers, control forwarding policy with apps. But: We don‘t know how to do this, no apps do this today.