IoT Workshop
RPL Tutorial
April 2011

JP Vasseur (jpv@cisco.com)
Cisco Distinguished Engineer
Co-Chair of the IETF ROLL Working Group
Chair of the Technology Advisory Board – IPSO alliance, IEEE P1901.2 IP sub-group
Where should Routing Take Place?

- Historically, a number of interesting research initiatives on routing in WSN,
- Main focus on algorithms … a bit less on architecture
- Most work assuming the use of MAC addresses – L2 “routing” (mesh-under)
- Support of multiple PHY/MAC is a MUST: IEEE 802.15.4, LP Wifi, PLC (number of flavors), …
- Layered architecture supporting multiple PHY/MAC, there aren’t that many options … IP!

See the position paper on the “mesh under versus route over” debate – IETF ID to be published soon
Routing Technical challenges in LLNs

- Energy consumption is a major issue (for battery powered sensors/controllers),
- Limited processing power
- Very **dynamic** topologies:
 - Link failure (LP RF)
 - Node failures (triggered or non triggered)
 - Node mobility (in some environments),
- Data processing usually required on the node itself,
- Sometimes deployed in **harsh** environments (e.g. Industrial),
- Potentially deployed at **very large scale**,
- Must be **self-managed** (auto-discovery, self-organizing networks)
“Classic” IP Networks are different

- Routing protocols used in Service Providers’ network are link state
- Scalability is a must but clearly not the same order of magnitude (most ISIS network are L2 flat)
- Convergence time in these networks is key: ~ 10s of ms but link/node characteristics are quite different
 - Low BER
 - Immediate triggering (Link layer trigger or Fast KA (BFD))
 - Use of pre-configured backup path with FRR (IP/MPLS)
 - Use of dampening in case of rare link flaps
- Mix of protection and restoration approach
- No need for node metrics/constraints
Lossy links are not just LP wireless …

• PLC also quite challenging
• Impedance variations, noise floor, K factor, …
• Both LP wireless and PLC:
 • Very hard to model link behavior (even with G/G/K Markov Chain, no M and no D …)
 • Only valid model is real-data link profile from deployed networks
How loosy is lossy?

- Note just an increased BER
- Strong instabilities … that should be locally handled
- Fast global convergence via restoration in LLN would ineluctably lead to routing oscillation
- Under-react should be the rule …
Long history in developing routing protocols at the IETF:

- RIP,
- OSPF,
- IS-IS,
- BGP
- MANET: AODV, OLSR, ...
The Internet Engineering Task Force

- New Routing WG (ROLL) formed for LLN in 2008

Reuse whenever possible
Routing Over Low power and Lossy Link (ROLL) WG

- Working Group Formed in Jan 2008 and re-chartered once

 Co-chairs: JP Vasseur (Cisco), David Culler (Arch Rock)

- **Mission**: define Routing Solutions for LLN (Low power and Lossy Networks)

- Very active work with a good variety of participants

- Rechartered to specify the routing protocol for smart objects networks (after protocol survey)

- DT formed (and now dissolved)

- Several proposals: **one** of then adopted as WG document: RPL
IETF WG ROLL status as of today

- Work Items
 - RPL is designed to support different LLN application requirements
 - RFC 5548 - Routing requirements for Urban LLNs
 - RFC 5673 - Routing requirements for Industrial LLNs
 - RFC 5826 - Routing requirements for Home Automation LLNs
 - RFC 5867 - Routing requirements for Building Automation LLNs
 - Routing metrics for LLN: approved
 - Produce a security Framework
 - Applicability statement of ROLL routing protocols

- Timeline was key (in particular for SG).
Specific Routing Requirements

- Deliberate choice of 4 main application areas
- Support of unic和平/anycast/multicast
- Adaptive routing with support of different metrics (latency, reliability, …)
- Support of constrained-based routing (energy, CPU, memory)
- Support of P2MP, MP2P and P2P with asymmetrical ECMP
- Scalability
- Discovery of nodes attributes (aggregator)
- 0-config (Warning not to add too many options !)
- Performance: indicative (lesson learned from the Internet)
- Security
Approach

- Examine current ROLL application requirement drafts
 - Distill a set of common requirements across application domains
 - Establish a minimalist set of criteria
- Examine current IETF routing protocols
 - In RFCs or I-DS that are on a working group's agenda
 - Evaluate these protocols in terms of ROLL criteria
Five Criteria

- Table scalability: how does the routing table size scale?
- Loss response: how expensive is it when links come and go?
- Control cost: how does the control overhead scale?
- Link cost: can the protocol consider link properties?
- Node cost: can the protocol consider node properties?
Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Table Size</th>
<th>Loss Response</th>
<th>Control Cost</th>
<th>Link Cost</th>
<th>Node Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF</td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
<td>pass</td>
<td>fail</td>
</tr>
<tr>
<td>OLSRv2</td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
<td>pass</td>
<td>pass</td>
</tr>
<tr>
<td>TBRPF</td>
<td>fail</td>
<td>pass</td>
<td>fail</td>
<td>pass</td>
<td>?</td>
</tr>
<tr>
<td>RIP</td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
<td>?</td>
<td>fail</td>
</tr>
<tr>
<td>AODV</td>
<td>pass</td>
<td>?</td>
<td>pass</td>
<td>fail</td>
<td>fail</td>
</tr>
<tr>
<td>DSDV</td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
<td>?</td>
<td>fail</td>
</tr>
<tr>
<td>DYMO[-low]</td>
<td>pass</td>
<td>fail</td>
<td>pass</td>
<td>fail</td>
<td>fail</td>
</tr>
<tr>
<td>DSR</td>
<td>fail</td>
<td>?</td>
<td>pass</td>
<td>fail</td>
<td>?</td>
</tr>
</tbody>
</table>

Slide from IETF-72
IETF ROLL WG Consensus

- Several routing protocols:
 - Proactive: RPL (initial work by the Design Team)
 - Reactive: DADR, ...
- Strong WG consensus to adopt RPL as the routing protocol for LLN
RPL: the **IP** Routing Protocol for Smart Objects

Physical Layer

Link Layer

<table>
<thead>
<tr>
<th>Internet Layer IP (Routing, Multicast, QoS, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Layer (TCP, UDP, SCTP, RTP, …)</td>
</tr>
<tr>
<td>Application Layer (HTTP, SMTP, FTP, SNMP, IMAP, DNS, …)</td>
</tr>
</tbody>
</table>

In compliance with the layered architecture of IP, RPL does not rely on any particular features of a specific link layer technology. RPL is designed to be able to operate over a variety of different link layers, including ones that are constrained, potentially lossy, or typically utilized in conjunction with highly constrained host or router devices, such as but not limited to, low power wireless or PLC (Power Line Communication) technologies.
Protocol Design Choices

- Difficult tension between {flexibility, wide set of requirements, constrained devices}

- **Option 1**: take the union … Not a good choice …

 If at all possible not always a good choice to overload the protocol with features not used by the application

 An aspect that has been neglected by several protocol “Designers”

- **Option 2**: take the intersection and make the design modular 😊

 Typically a subset of the RPL specification can be implement in light in the network requirement

 Allows for minimal footprint implementations
RPL builds Directed Acyclic Graphs

- Tree would have been simpler but need for redundancy
- RPL supports the concept of DAG instances (a colored DAG), concept similar to MTR
- Allows a node to join multiple colored DAG with different Objective Functions
- And within an instance, there might be multiple DODAG (Destination Oriented DAG)
- A node may belong to more than one RPL instance
- Packets are tagged to follow a specific instance (defined at the application layer): no loops between instances
RPL Message Types

- RPL Control messages are ICMPv6 messages.
- RPL message = {Base, Options}

 DIS: DODAG Information Solicitation

 DIO: DODAG Information Object

 DAO: Destination Advertisement Object

 DAO-ACK: Destination Advertisement Object Acknowledgement

 + The 4 secured versions

- Link-local scope: source is link-local unicast and destination=link-local unicast or all-RPL-nodes(FF02::1) (for all RPL messages except DAO/DAO-ACK in non-storing mode, DIO replies to DIS).
Building a DAG – Upward routing
Router runs an algorithm to choose a parent based on an objective and metrics/constraint (best quality path, highest bandwidth link, ...)

Step 1

LBR

DIO message multicasted to all-RPL-nodes by the root

Step 2

Step 3

Battery operated node used a (hard) constraint

The DAG (Direct Acyclic Graph) continues to build

Final

X

ETX (=1 when not indicated) => reflect the link quality
The RPL DIO Message

Options

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Data …</th>
</tr>
</thead>
</table>

RPL Instance ID

- **G**: Grounded

Version

- **Rank**

DTSN

- **Flags**

DODAG ID

MOP:

- 0: no Downward route
- 1: Non Storing Mode
- 2: Storing without Multicast
- 3: Storing with Multicast

DTSN: set by the node issuing the DIO used to maintain DAO
DODAG Configuration (in DIO): unchanged by intermediate nodes, sent occasionally (always upon receiving DIS)

Type=4 Length=14
DIOIntMin DIORund
MinHopRankIncrease
Reserved Def Lifetime

Path Control Size: #bits of Path Control Field
DagMaxRankIncrease may be used by Local Repair

DIOIntDbl: DIOInterdoubling
DIOIntervalMin: Imin
DIORund: K

Default Lifetime for all RPL routes

Example of a RPL option
Concept of Multiple RPL Instances (a la MTR)

Physical topology

DAG Instance 1: high quality – no battery operated nodes
DAG Instance 2: low latency

Battery Operated Node

Poor Quality (LQL=3)
Fair Quality (LQL=2)
Good Quality (LQL=1)
Latency in milliseconds

RPL instance 1

RPL instance 2
Routing Metrics used by RPL
Use of adaptive routing metrics …

- Today’s IGP use static link metrics
 Administrative cost or polynomial cost

- Using dynamic metric is not a new idea (experimented in ARPANET-II based on average queue length)
 Hard to control … routing oscillations
 Issue with too frequent control traffic in LLN
Routing Metrics in LLNs

Node Metrics

<table>
<thead>
<tr>
<th>Node State and Attributes Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose is to reflect node workload (CPU, Memory...)</td>
</tr>
<tr>
<td>“O” flag signals overload of resource</td>
</tr>
<tr>
<td>“A” flag signals node can act as traffic aggregator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node Energy Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>“T” flag: Node type: 0 = Mains, 1 = Battery, 2 = Scavenger</td>
</tr>
<tr>
<td>“I” bit: Use node type as a constraint (include/exclude)</td>
</tr>
<tr>
<td>“E” flag: Estimated energy remaining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hop Count Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint - max number of hops that can be traversed</td>
</tr>
<tr>
<td>Metric - total number of hops traversed</td>
</tr>
</tbody>
</table>

Link Metrics

<table>
<thead>
<tr>
<th>Throughput Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently available throughput (Bytes per second)</td>
</tr>
<tr>
<td>Throughput range supported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint - max latency allowable on path</td>
</tr>
<tr>
<td>Metric - additive metric updated along path</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Quality Level Reliability (LQL)</td>
</tr>
<tr>
<td>0 = Unknown, 1 = High, 2 = Medium, 3 = Low</td>
</tr>
<tr>
<td>Expected Transmission Count (ETX)</td>
</tr>
<tr>
<td>(Average number of TX to deliver a packet)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric or constraint, arbitrary admin value</td>
</tr>
</tbody>
</table>

Object can be used as metric and/or constraint - metric can be additive/max/..
The RPL Objective Function

- An objective function defines how nodes perform parent selection and how to compute rank based on metrics
- Defined by the OCP
- Combined with metrics/constraints

 “Use the LQL as a global recorded metric and favor paths with the minimum number of low and fair quality links, use the link color as a link constraint to avoid non encrypted links”.

 “Find the best path in term of latency (link latency is used as a global aggregated metric), while avoiding poor quality links and battery operated nodes”.
- See OF0 and MRHOF
Mode of Operation

- Parent selection governed by OF, decoupled from metrics and constraints

- Node leaving a DODAG should remember the DODAG parameters for some period of time to avoid rejoining a node in a former sub-DAG, thus avoiding loops.

- DODAGVersion governed by DAGroot according to implementation specific events

- A node with DODAG parent set =={} may set G bit (with lower Pref)

- DODAG selection is also implementation-specific
Mode of Operation (Cont’)

- **Movement within a DAG**
 - Node may jump to a parent with a lower rank

 Within a DODAG a node cannot advertise a rank L>L +DAGMaxRankIncrease (RANK=INFINITY is an exception)

 - Node can select any parent advertising a higher DODAGVersion

 - Node can at any time join a different DODAG within the same RPL instance with no rank restriction (except if the node used to belong to this DODAG Version)

 - If a node needs to move down it MAY poison its sub-DAG

- **Poisoning**

 Means sending DIO with Rank=INFINITY

 - Node cannot select a parent advertising a Rank=Infinity

 Still a node may detach without poisoning by setting the G Flag
A node should prefer to stay in its DODAG via an alternate parent if any should the preferred parent have left its DODAG.

DIO transmission is governed by Trickle Timer.

Reception of DIO from less DAGRank causing no change to DODAG parent set, preferred parents, Rank, reception of unicast DIS, => consistent.

Trickle timer reset upon inconsistency detection:

- Packet forwarding error (Rank-error, Forwarding-error, …)
- Reception of DIS with all predicates==true
- New DODAGVersion (new DODAGVersionNumber, new RPL Instance)

See Trickle Algorithm – next slide.
The use of Trickle Timers

- The basic idea is to suppress redundant messages (key when resources such as energy and bandwidth are scarce)

- Here is the algorithm:

 \[
 \text{T: Timer value. T is in the range } [I, I/2] \\
 \text{C: Redundancy counter} \\
 \text{K: Redundancy constant} \\
 \text{I_{min}: Smallest value of I} \\
 \text{I_{doubling}: The number of times is doubled before maintaining a constant multicast rate.} \\
 \text{I_{max}: Largest value of } I_{max} = I_{min} \times 2^{I_{doubling}}. \\
 \]

 When T fires, if C>K, then send DIO, then upon expiration of I, compute new(I) and T.

 Detection of inconsistency => Trickle timer reset

 Nodes may increment C if they receive consistent messages
Trickle at works …
RPL DIS message and Option

- **Base Format:**
 - Allows for predicate to solicit replies from subset of nodes

- **Flags**
 - Reserved
 - Option ...

- **Type=7**
 - Option Length=19
 - RPLInstanceID
 - V I D Flags
 - DODAGID
 - Version num

- **Version predicate**
 - Receiver DOAGVersion=Version?

- **InstanceID predicate**
 - Receiver RPLInstanceID=RPLInstanceID?

- **DODAGID predicate**
 - Receiver DODAGID=DODAGID?

- Node reset trickle timer when all predicates are true.

- Used to solicit a DIO from a RPL node in the vicinity
- Ability to add filtering to the request to limit the number of replies (use of predicates)
Operation as a leaf node

- As with many other protocol, refers to the ability to participate to the routing domain, without forwarding RPL traffic.
- Governed by policy or upon receiving unsupported/unrecognized OF/Metric/Constraint
- Send DIO in very specific circumstances (transition – node was part of another DODAG receiving packet for old topology) with RANK=Infinitive
- May unicast transmit DAO or multicast DAO for 1-hop optimization
Downward routing
Storing Versus Non-Storing Mode

- RPL supports two modes (mix not allowed):
 - **Storing mode**: nodes do store/maintain routing tables
 - **Non-storing mode**: nodes use default routing upward and source routing downward

- Upward routing similar

- Differences in downward routing:
 - **Storing mode**: packets travel up to a common ancestor
 - **Non storing mode**: packets travel up to the DAG root, then source routed

- Impact on forwarding:
 - Use of source routing in non-storing
 - No use of RPL option header (no risk of loops) in non-storing
Populating the Routing Tables

- DAG provides UP connectivity
- Requires DOWN connectivity (routes toward the leaves)
- RPL specifies DAO messages used to advertize prefixes to parents (storing) or DAGRoot (non-storing)
- Nodes capable of storing the prefixes populate their routing tables
- Packets are routed up to a common ancestor for P2P routing with an optimization for 1-hop reachable nodes
The RPL DAO Message

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPLInstanceID</td>
<td>Unique identifier for each RPL instance.</td>
</tr>
<tr>
<td>K</td>
<td>Flags</td>
</tr>
<tr>
<td>D</td>
<td>DAO Sequence</td>
</tr>
<tr>
<td>Flags</td>
<td>Reserved</td>
</tr>
<tr>
<td>Reserved</td>
<td>DAO-ACK requested</td>
</tr>
<tr>
<td>DAO Sequence</td>
<td>D=1 if DODAGID is present (when LocalRPLInstance ID is used)</td>
</tr>
<tr>
<td>Options</td>
<td>* DODAGID</td>
</tr>
</tbody>
</table>

++ each time a DAO is issued, used in DAO-ACK (unique to each node)

- Set if DAO-ACK requested
- D=1 if DODAGID is present (when LocalRPLInstance ID is used)
RPL Option: Target

- RPL Target (may be in DAO): indicates reachability.
- Transit Information (may be in DAO): may contain Parent address for an ancestor used with source routing (could be one Transit info per DAO parent for non-storing). A Path Control field used for non-storing to influence the reverse path.

++ each time issuing a Target

E: External route

<table>
<thead>
<tr>
<th>Type=6</th>
<th>Option Length</th>
<th>E</th>
<th>Flags</th>
<th>Path Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Seq</td>
<td>Path Lifetime</td>
<td>Parent Address *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Path Control: Number of 1-bit fields specified in PCS of DODAG config (DIO).
Populating the routing tables using DAO message

- Two modes of operations: storing mode and non storing modes

DAO

Unicast to DAO parents

STORING MODE

DAO

Unicast to DODAG Root (not processed by intermediate nodes)

NON STORING MODE
Triggering Multicast DAO for 1-hop routing

- Node may multicast DAO using link local all-RPL-node
- Used only to advertise information about the node itself (prefixes directly connected or owned by the node itself)
- MUST NOT be used to relay information using unicast DAO
- Usually preferred than routes learned through unicast DAO
Loops in DODAG: detection and repairs
Potential Loops

- Loops in DV are hardly avoidable (due to control message loss and sibling routing)
- Tension between Loops avoidance and loop detection
- RPL supports both
 - E.g. Rules about the rank: do not attach to a node deeper in the DAG
 - E.g. Set flags in the packet header to detect loops that may occur (datapath validation)
- When loop could occur?
 - DIO/DAO message loss is the most common example …
- RPL makes use of on-demand loop detection with data packets (e.g. rank of sender and direction are used for loop detection)
Loop Detection

- Idea: add flags to data packets to detect and breaks loops
- Receiving a packet with inconsistent flag according to the rank is a loop indication (Set to INFINITY when moving to new DODAGVersion)
- DAG inconsistency loop detection:
 - O=1 from a node with higher Rank
 - O=0 from a node with a lower rank
- Once an inconsistency is detected, the R bit is set. Upon receiving a packet with R=1, the packet MUST be dropped and trickle reset.

<table>
<thead>
<tr>
<th>Option Type</th>
<th>Opt Data Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>O R F 0 0 0 0</td>
<td>RPLInstanceID</td>
</tr>
</tbody>
</table>

Sub-TLVs

O: Down bit; R: Rank-error bit; F: Forwarding Error bit => Expected to change en-route (packet MUST be discarded if RPL option header not understood)

RPL Option header (IPv6 Hop-by-hop header) immediately following the IPv6 header
DAO inconsistency detection and recovery

- Only for storing mode (use of ICMP “Error in source routing Header” in non-storing mode)
- Upon reception of a packet with no-route, sent it back with F=1 to clean-up state.
DODAG Maintenance and Repairs
Global versus Local Repair

- **Global repair:** rebuilt the DAG … requires a new DAG
 Sequence number generated by the root
 - Triggered by the root
 - Potentially signaled to the root (under investigation)

- **Local Repair:** find a “quick” local repair path
 - Only requiring local changes!
 - May not be optimal according to the OF and overall DAG shape, which is fine

- Complementary approaches
Step 0

Step 1

DIO poisoning

Step 2
Remember the DAGMaxRankIncrease?

- Before moving down, remember the rank \(r \)
- Do not attach to any node with rank \(r + H \)
- This help reduce the size of infinity 😊

Let \(L \) be the lowest rank within a DODAG Version that a given node has advertised. Within the same DODAG Version, that node MUST NOT advertise an effective rank higher than \(L + \text{DAGMaxRankIncrease} \). INFINITE_RANK is an exception to this rule: a node MAY advertise an INFINITE_RANK within a DODAG version without restriction. If a node's Rank were to be higher than allowed by \(L + \text{DAGMaxRankIncrease} \), when it advertises Rank it MUST advertise its Rank as INFINITE_RANK.
Step 0

Repair diameter: all nodes with a rank=1+3

Best Case

Worst Case

Sender Rank=2, O=1 => loop!
Reset Trickle CTI

Loop!
Forwarding in LLN
Forwarding

Two related drafts (Passed Working Last Call):

- **draft-ietf-6man-rpl-option**
 - RPL information in data-plane with IPv6 Hop-by-Hop Option
- **draft-ietf-6man-rpl-routing-header**
 - Source routes for non-storing mode with IPv6 Routing Header
Some Simulation Results
Simulation Results

- Based on Omnet++ (Discrete Event simulator) / Castalia (Wireless) – Radio: TelosB CC2420 with 15.4 links.

- No formal Markov chain modeling: capture of thousands on link traces capturing topologies and PDR/RSSI, both in-door and outdoor. Additional Markov Chain for link failures.

- Trickle used with $I_{min}=1s$ and $I_{doubling}$ (Max=18.2 hours)

- Most traffic simulated MP2P(80%), CBR, Metric=ETX (other simulation for building automation)

Simulations can be quite useful to find issues, not to demonstrate that a protocol actually works...
Simulation Results

Path Cost stretch using ETX as metric (specifically for building: 60% 1-hop, 20% 2-hop, 20% uniformly distributed).
Simulation Results – Routing Stability

Number of parents flipping

Comparison of Parent flipping at different tolerance of

Path Cost Stretch

Fraction of path change

Fractional Metric Distance Stretch

CDF in %age

Fraction of path change

0% Tolerance

10% Tolerance

20% Tolerance

30% Change ignored
Simulation Results – Routing Stability

End-to-End Latency

Comparison of End to End latency for different hop count

<= 2 hops
3–5 hops
>=6 hops

CDF of Delay in %age

Delay in seconds

Copyright © 2009 Cisco Systems, Inc. All rights reserved.
Is RPL Ready for “prime time”?

- Lots of ideas coming from deployed networks
- More than 15 implementations including several commercial products this year
- Stable specification (One last IESG DISCUSS, Routing metrics, trickle approved)
- Two interoperability test events took place (earlier revision):
 - IPSO (Storing mode)
 - Zigbee/IP (Non-Storing modes)

 Adopted by Industry alliances: Zigbee/IP, Wavenis, IEEE P1901.2, ...
Is RPL Lightweight?

- RPL has been designed to be MODULAR
- RAM and Flash usage figures of four independent implementations
Potential Future items

- Applicability statements
- ROLL re-chartering discussion
- Potential candidates
 - Lightweight security
 - Label Switching (Label distribution, Forwarding !)
 - “Routing Admission control”
 - Path Computation Element
Thank you for your attention