Internet of Things Workshop
The “mesh--under” versus “route over” debate in IP Smart Objects Networks

March 2011

JP Vasseur (jpv@cisco.com), Cisco Distinguished Engineer, Co-Chair of the IETF ROLL Working Group
Jonathan Hui (johui@cisccom), Software Engineer
Mesh-Under vs. Route-Over

- Mesh-under places routing functions at the link layer

 In many cases, to maintain the Ethernet abstraction

 Single broadcast domain, deterministic link characteristics

- Route-over places *all* routing functions at IP layer

 Every PHY hop appears as an IP hop
Mesh-Under and IPv6 ND

- IPv6 ND assumes deterministic link characteristics
- Neighbor Unreachability Detection
 - Must operate over multiple LLN link hops
 - Communication latency and reliability can vary greatly
 - What timeout to use?
- Default Router Selection
 - Expose link-layer path cost when selecting a router?
 - How to utilize different path costs?
 - Multi-layer recovery issues
Mesh-Under and Link-Local Scope

- Link-Local scope spans the entire LLN
 All devices in a LLN appear as an IP neighbor

- Any IP traffic can invoke costly operations
 Any link-local traffic may invoke L2 routing functions
 Any link-local multicast may span the entire LLN

- Cannot build IP protocols that:
 Limit communication to immediate neighbor
 Discover and utilize link topology
 Build effective overlays for in-network processing
Routing: at which layer?

- Lots of interesting research initiatives in WSNs
 - Focus primarily on algorithms, not on architecture
 - Most directly use MAC addresses – L2 “routing” (mesh-under)

- Support of multiple PHY/MAC is a MUST, *one of the key advantages of IP layered architecture*
 - IEEE 802.15.4, Low-Power WiFi, PLC (number of flavors),…

- A layered network architecture that supports multiple PHY/MAC technologies?

 The Internet Protocol, of course!
The shortcoming of multi-layer routing

Haven’t we learned from the past? Remember IP over ATM?

• IP layer with no visibility on the layer 2 path characteristic
• Issues when not using the same metrics, objective functions, filters/dampening, …
• Makes “optimal” or “efficient” routing very difficult
• Layer 2 path (IP links) change because of layer 2 rerouting (failure or reoptimization) lead to IP kink metric changes. How is this updated?
• There is still a need for an abstraction layer model but for Point to Point layer 2 links => Routing Metrics
The shortcoming of multi-layer routing Cont’

Lack of actual path characteristics, consistency between routing metrics/OF/…, inability to compute optimal end-to-end path, …

A-N1-N4-N3-B is the link layer path computed by the “mesh-under” “routing” protocol operating at the link layer in domain 1
Combine “Mesh Under” and “Route Over”

Another **major** challenge: **multi-layer recovery**

- Require a multi-layer recovery approach
- Current models are timer-based:
 - Needs to be conservative and most of the time bottom-up
 - Increased recovery time for failures non recoverable at layer 2
- Inter-layer collaborative approaches have been studied (e.g. IP over Optical) => definitively too complex for current Sensor Hardware
The shortcoming of multi-layer routing
Cont’ => Multi-layer recovery

A-N1-N2-N3-B is the new path computed by the “mesh-under” “routing” after the failure of the N1-N4 link
Conclusion

- See paper for more details (IETF draft to be submitted soon)
- Try to show the shortcomings of a mesh-under approach …
- Support of route-over is a MUST and RPL is the only routing protocol standardized at the IETF
- Support of multi-layer routing in LLN:
 - Does not bring any value
 - Dramatically increase complexity (we have the experience !)
 - Number of shortcomings: lack of visibility and consistency across routing protocols, multi-layer recovery, …
- We have a route-over solution specified at the IETF why adding any additional routing protocol ??