
Good Cop, Bad Cop: Forcing Middleboxes to Cooperate
Costin Raiciu, Vladimir Olteanu, Radu Stoenescu University Politehnica of Bucharest

1. INTRODUCTION
The original Internet architecture offered a clean contract

to endpoints: packets sent will be delivered unmodified 1 or
dropped when there is congestion. The proliferation of mid-
dleboxes has broken this simple contract to the point where
the service the Internet provides to endpoints is entirely un-
predictable:

• Reachability depends on fields in the packet header
and even the payload, as firewalls strive to contain in-
creasing levels of malicious traffic targeted at vulnera-
ble endpoint software.

• Packets can be modified en-route by boxes that un-
derstand the higher level protocol (either TCP or app-
level) and optimize it. For instance, NATs support
FTP by rewriting the IP address of the sender inside
the TCP payload to match the address of the NAT. As
the NAT’s IP address will likely have a different length,
this forces NATs to also modify sequence and acknowl-
edgment numbers. Other performance enhancing mid-
dleboxes are discussed in [1].

Firewalls not only drop all unknown protocols or exten-
sions (e.g. SCTP [7], ECN [6]), but they also constrain
reachability for traditional protocols: there is no guarantee
that UDP or TCP outside ports 80/443 work through many
networks including office, cellular or hotspots [3].

This pushes most apps to rely on tunneling to reliably
get through networks. HTTP is a favourite amongst mo-
bile apps, and it has even been touted as the new hourglass
of the Internet [5]. However, tunneling adds framing over-
head and the effect is quite pronounced when the tunneled
traffic is UDP-like (e.g. VOIP): in such cases (useless) re-
transmissions and head-of-line blocking increase jitter and
degrade app-performance. A minority of apps use adaptive
tunneling to ensure reachability and the smallest possible
overhead: for instance, Skype tries UDP, then TCP and fi-
nally HTTP or HTTPS. This approach is also suboptimal:
certain middleboxes rate limit UDP tunnels to a level where
Skype can check reachability but can’t make calls 2.

Content-modifying middleboxes are more problematic: they
optimize for known apps (e.g. FTP/HTTP) but can break
apps that utilize the same port numbers as the known apps.
For instance, HTTP parsers can reply with cached contents
instead of forwarding the request to the server which can
break end-to-end semantics of apps tunneling over HTTP.
Because of this, apps are forced to tunnel over HTTPS,
thus hiding their traffic from the operator. This outcome
is suboptimal for all parties: mobiles spend more energy to
encrypt and decrypt traffic (15% in our tests on a Galaxy
Nexus) and the operator can’t see the traffic anymore and
can’t protect its customers and network against attacks.

Content modifying middleboxes also increase complexity
in new protocols. Multipath TCP [2], a TCP extension that
allows using multiple paths in a single TCP connection, in-
cludes a redundant checksum in the DSS option to ensure it

1With the exception of the TTL and checksum fields.
2Discussion with Romanian cellular operators.

can function correctly with content-changing middleboxes:
when a change in payload detected MPTCP either closes
the affected subflow or reverts to plain TCP if the affected
subflow is the only available one.

In this paper we discuss two fundamentally different di-
rections in which we can improve the status quo. Our first
proposal is a “good cop”: we present an API endpoints can
use to understand the contract offered by the network, and
discusses how one might implement this API. We find a few
win-win scenarios where both the mobile and the operator
gain from collaborating, but it is arguable whether these are
enough for this API (or one similar) to be deployed. Our
second proposal is a“bad cop”and proposes that all apps use
a multitude of tunnels at all times: it treats middleboxes as
adversaries and tries to render ineffective any policing they
do, while still offering efficient communication. We believe
that our good cop-bad cop approach can force network op-
erators to setup their middleboxes such they behave better
to the endpoints in the near future.

2. GOOD COP: AN API TO ALLOW COL-
LABORATION BETWEEN ENDPOINTS
AND THE NETWORK

Assume the network operator and the endpoint (apps)
want to collaborate. What is an appropriate API that would
solve the problems we’ve outlined so far? The API must of-
fer primitives that allow endpoints query about reachability
and packet modifications, while at the same time allowing
the operator to maintain its internal network topology and
configuration private. To alleviate privacy concerns, our ap-
proach aims to allow queries whose answer the clients can
find out anyway by using active probing. The usefulness of
the API is that it gives definite answers quickly, rather than
having to wait for an arbitrarily long probing process to fin-
ish. Our API allows endpoints to ask their network operator
questions using the following syntax:

reach <node> [flow] -> <node> [flow] [const fields]

In the syntax above, node describes the source or desti-
nation of traffic and can be: an IP address or a subnet, the
keyword client to denotes subnets of the operator’s residen-
tial clients, or the keyword internet to refer arbitrary traffic
originating from outside the operator’s network.

The flow specification uses tcpdump format and constrains
the flow that departs from the corresponding node. By al-
tering the flow definition between the source and destina-
tion nodes we can specify how the flow should be changed
between those nodes.

Using this syntax clients can express how they would like
the network to behave without actually knowing the network
topology or the operator’s own policy. For instance, the
client below expects that Internet UDP traffic can reach its
private IP address on port 1500:

reach internet udp -> client dst port 1500

The const construct allows users to specify invariants:
packet header fields that remain constant on a hop between

two nodes. For this, the user adds const and the header
fields, in tcpdump format, that should be invariant. In the
example below, the client specifies that the payload should
not be modified in the operator’s network:

reach internet tcp->client src port 80 const payload

The operator’s reply to these client questions is binary,
indicating whether the property holds for the client’s traf-
fic as it passes through the operator’s network. Note that
there is no guarantee the traffic will not be modified outside
the network operator’s domain; however, most transparent
middleboxes today are deployed at the “first-hop” operator
while the backbone is mostly middlebox free: by asking their
first hop operator the clients can be reasonably sure their re-
quirements hold on the whole end-to-end path.

2.1 Implementing the API
We can implement the API by deploying a controller in the

operator’s network that accepts requests from authenticated
clients. The controller knows the topology of the operator,
including a snapshot of router forwarding tables and the
deployed middleboxes. In our implementation, the middle-
boxes are implemented as Click modular router [4] configu-
rations. A configuration is a directed graph of Click elements
which are processing units performing a simple task such as
decreasing TTL or filtering certain packets. We have manu-
ally modeled the behaviour of individual Click elements. To
answer client requests we use Symnet, a static analysis tool
that applies symbolic execution to networks [8].

The controller runs client reachability checks as follows.
It first creates a symbolic packet using the initial flow defini-
tion or an unconstrained packet, if no definition is given, and
injects it at the initial node provided. The controller uses
SymNet to track the flow through the network. The output
of SymNet is the flow reachable at every node in the network,
together with a history of modifications and constraints ap-
plied to each packet field. The controller then checks reach-
ability constraints by verifying that the flow spec provided
in a given node matches the one resulting from symbolic ex-
ecution. The requirement is satisfied if there exists at least
one flow (symbolic) that conforms to the verified constraints.
To check invariants, the controller simply checks whether the
field value was not modified on any possible path between
the source and the destination nodes.

SymNet helps find a yes/no answer for every client ques-
tion, but the operator can go further: if the answer is nega-
tive, it can reconfigure its middleboxes dynamically to hon-
our the client’s request, and then give a positive answer.
The API effectively tells the operator what the client wants,
an information that is not available today.

2.2 Use cases
Client apps can use the API to quickly decide what pro-

tocol to use, including port numbers, as well as deciding
whether checksumming is needed. Below we discuss two use
cases we have implemented that we believe showcase the
usefulness of the API.

Protocol Tunneling. Say we wish to run SCTP (or any
other new protocol) over the Internet. Deploying it natively
is impossible because middleboxes block all traffic that is
not TCP or UDP. Thus SCTP must be tunneled, but which
tunnel should we use? UDP is the best choice, but it may not

work because of firewalls that drop non-DNS UDP packets.
In such cases, TCP should be used, but we expect poorer
performance because of bad interactions between SCTP’s
congestion control loop and TCP’s.

SCTP has to be adaptive about the tunnel it uses: first
try UDP and fall back to TCP if UDP does not work, but to
make the decision we need at least one timeout to elapse at
the sender—three seconds according to the spec. Instead,
the sender can use the API to send a UDP reachability
requirement to the operator network. This request takes
around 200ms to answer in our implementation, allowing
the client to make the optimal tunnel choice much faster.

HTTP vs. HTTPS. Mobile apps often tunnel their data
over HTTP to communicate with their servers because it just
works, but application optimizers may alter HTTP headers
(e.g. accepted-encoding) or the payload itself (compression),
breaking the application’s own protocol. Should the appli-
cations use HTTPS instead to bypass such optimizers? We
have measured the energy consumption of a Galaxy Nexus
phone while downloading a file over WiFi at 8Mbps. The
download times are almost identical, while the energy con-
sumption over HTTP was 570mW and 650mW over HTTPS,
15% higher. The added cost of HTTPS comes from the CPU
cycles needed to decrypt the traffic.

Smaller energy consumption is a strong incentive for mo-
biles to use HTTP, but this may break apps, so we are stuck
with the suboptimal solution of using HTTPS. Instead, the
client should send an invariant request to the operator ask-
ing that its TCP payload not be modified.

3. BAD COP: NINJA TUNNELING
Our second approach is pessimistic, assuming network op-

erators will not cooperate to alleviate the troubles caused
by middleboxes to new endpoint apps. In this case, we pro-
pose that endpoints should simply force the network to allow
reachability and avoid packet changes by using a technique
we call ninja tunneling. With ninja tunneling, every end-
point always uses a set of tunnels to get through their first
hop network operator, such as cellular, DSL or hotspot. The
set of tunnels can dynamically be changed in time, and it
can include any from the following non-exhaustive list: na-
tive IP, UDP, TCP, HTTP, HTTPS, DNS, covert channels,
etc. The set of tunnels is forever changing, perhaps in re-
sponse to network behaviour.

The key to ensure ninja tunneling ’s success is that tun-
nels are invisible to applications: unmodified apps should
benefit from it. The ninja tunnels will be deployed as soft-
ware in the (mobile) operating system and at content/cloud
providers that terminate the tunnels initiated by the clients.
Should all tunnels originating from a mobile user be termi-
nated by the same cloud machine, or can we use tunnels
terminated by different machines spread through the Inter-
net? The latter is more attractive because it would make
detection and filtering of ninja tunnels much more difficult.

The answer to the question above is closely tied with an-
other issue: how should application traffic be spread over
this dynamic collection of tunnels? In this position paper,
we only consider the case when both the endpoint and its
remote endpoint (e.g. the server it is receiving a service
from) have upgraded to Multipath TCP. Spreading traffic
over multiple tunnels is trivial with MPTCP: each tunnel
will be treated as a different path and MPTCP will create

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

(a) Standard behaviour

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

Time (s)

(b) Tunnel losses exposed with ECN

HTTP tunnel
UDP

Figure 1: Runnning MPTCP over an UDP and HTTP tun-
nel sharing a 10Mbps link

a corresponding subflow. If certain tunnels do not work,
MPTCP will simply move traffic onto tunnels that do work.

It is plain to see that, as long as there is some sort of
connectivity allowed, ninja tunnels will provide reachability
to any application. As the set of tunnels can be constantly
evolved and personalized per endpoint, network operators
will have a difficult time identifying groups of tunnels that
are related and an even harder time deciding which ones
to drop. We do not claim it is impossible for operators
to block such tunnels, it will just be much more expensive
for them to do so. Rate-limiting certain tunnels, as done
with Skype today, will also not work, as MPTCP will push
more traffic through the other tunnels. Finally, the Mul-
tipath TCP checksum will also detect payload changes on
the different subflows, and MPTCP will terminate the cor-
responding subflows when changes are detected , therefore
ensuring the integrity of the payload.

Efficiency. A natural concern regarding ninja tunneling is
efficiency: many of these tunnels (e.g. covert channels) have
a high framing overhead and have a poor ratio of useful
traffic to total traffic. As the bottleneck in most networks
is the user’s access link (e.g. cellular connection or DSL
line), using a mix of inefficient tunnels will simply decrease
the total goodput of the user. Ideally, we would like the
endpoint to utilize the most efficient tunnel at all times.
Determining this in advance is not possible because network
operators could throttle certain traffic after a period of time
(e.g. after DPI makes a decision to classify the traffic).

The Multipath TCP congestion controller actively moves
traffic away from congested paths onto uncongested paths,
as determined by the congestion window of each subflow
[9]. Is this mechanism enough to push traffic through the
most efficient tunnels? We ran experiments downloading a
large file (with wget over MPTCP) over a mixture of the
following tunnels, all sharing the same 10Mbps access link
connecting our client to the server: UDP, TCP, HTTP, DNS.
We found that MPTCP behaved correctly when UDP and
DNS tunnels were used, pushing most of the traffic over the
more efficient UDP tunnel and achieving a throughput of
around 9.5Mbps; the DNS tunnel only achieves 7Mbps.

However, when using TCP-based tunnels (e.g. TCP or
HTTP) in conjunction with DNS, MPTCP pushed a lot of
traffic over the less efficient TCP tunnel, as shown in the
figure 1.a. The problem is that the TCP tunnel hides the
losses to the MPTCP congestion controller and increases
delay in the process. The effect is that the MPTCP con-
gestion controller does not move traffic away from the TCP
tunnel. To avoid this problem, we implemented a technique
that sets an ECN mark in the MPTCP subflow whenever
the tunnel experiences a loss. This technique achieves its

purpose, allowing MPTCP to balance traffic to the most
efficient tunnel, as shown in Fig. 1.b.

Next steps. Many details need to be resolved before ninja
tunnels are practical. For instance, what if the remote server
does not speak MPTCP? What if the traffic is UDP?

4. CONCLUSIONS
We have outlined two diverging proposals that aim to

solve the same problem: the service offered by the network
has become unpredictable, stifling innovation.

Our more pragmatic solution picks a contract that seems
reasonable for endpoints, ubiquitous reachability and immutable
payload, and enforces it by using MPTCP to spread the data
over a mix of different tunnels. The only thing an operator
can now do is make it cheaper or more expensive to achieve
this contract: the app does not have to worry about the
details, as ninja tunneling will dynamically find the most
efficient tunnel and send most data through it. Eventually,
operators that force endpoints to use inefficient tunnels will
lose their customers, so this may well act as a driving force
towards removing unwanted middleboxes.

We have also outlined a constructive approach where the
endpoints can use an API to query the network about the
service it offers. This offers more information to both op-
erators and endpoints, and in the long run we believe this
approach is preferable for operators: they still get to run
their app optimizers for traffic that allows it explicitly, but
they will have to honour the requests of users asking mid-
dleboxes to not mess with their traffic.

The API and ninja tunneling complement each other: ninja
tunneling is a short term fix and a stick to beat operators
into being nice. The API is the proper way of implementing
cooperation, but it is doomed without something like ninja
tunnels that forces operators to adopt it.

Acknowledgements
This work was partly funded by Trilogy 2, a research project
funded by the European Commission (FP7 317756).

5. REFERENCES
[1] J. Border, M. Kojo, J. Griner, G. Montenegro, and

Z. Shelby. RFC 3135: Performance Enhancing Proxies
Intended to Mitigate Link-Related Degradations, June 2001.

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. RFC
6824: TCP Extensions for Multipath Operation with
Multiple Addresses, January 2013.

[3] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to extend
tcp? In Proc. ACM IMC, 2011.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems, August 2000, 2000.

[5] L. Popa, A. Ghodsi, and I. Stoica. Http as the narrow waist
of the future internet. In Hotnets, 2010.

[6] K. Ramakrishnan, S. Floyd, and D. Black. RFC 3168: The
Addition of Explicit Congestion Notification (ECN) to IP ,
September 2001.

[7] R. Stewart. RFC 4960: Stream Control Transmission
Protocol, September 2007.

[8] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.
Symnet: Static checking for stateful networks. In
HotMiddlebox, 2013.

[9] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, implementation and evaluation of congestion control
for multipath tcp. In NSDI, 2011.

	Introduction
	Good Cop: an API to allow collaboration between endpoints and the network
	Implementing the API
	Use cases

	Bad Cop: Ninja Tunneling
	Conclusions
	References

