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ABSTRACT
During early 2020, the SARS-CoV-2 virus rapidly spread
worldwide, forcing many governments to impose strict lock-
down measures to tackle the pandemic. This significantly
changed people’s mobility and habits, subsequently impact-
ing how they use telecommunication networks. In this pa-
per, we investigate the effects of the COVID-19 emergency
on a UK Mobile Network Operator (MNO). We quantify the
changes in users’ mobility and investigate how this impacted
the cellular network usage and performance. Our analysis
spans from the entire country to specific regions, and geode-
mographic area clusters. We also provide a detailed analysis
for London. Our findings bring insights at different geo-
temporal granularity on the status of the cellular network,
from the decrease in data traffic volume in the cellular net-
work and lower load on the radio network, counterposed to
a surge in the conversational voice traffic volume.
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1 INTRODUCTION
After the emergence of SARS-CoV-2 in the province ofWuhan
(China) in December 2019, the virus rapidly spread to neigh-
boring countries and to the rest of the world. It was de-
clared by the World Health Organization a Public Health
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Emergency on January 30th, 2020 and a pandemic on March
11th, 2020 (week 11 of 2020). As a result, different countries
have implemented a variety of interventions to contain the
virus. These included forced or recommended confinement,
intended to reduce transmission by reducing contact rates be-
tween individuals[24]. These policies resulted in a dramatic
change in human mobility, which in turn affected the traffic
patterns and operations in telecommunication networks.

In this paper, we focus on the cellular network of O2 UK,
and evaluate how the changes in people’s mobility impacted
this Mobile Network Operator (MNO) traffic patterns. The
coronavirus outbreak reached the UK on January 31st 2020,
when the first two (imported) cases with the respiratory
disease COVID-19 were confirmed in York. On March 16th
2020 (week 12 of 2020), the government recommended all
citizens to work from home, and on March 20th (also week
12), it implemented the closure of sporting events, schools,
restaurants, bars and gyms.1 On the 23rd of March (week 13),
the government imposed a lockdown on the whole popula-
tion, banning all non-essential travel and contact with people
outside the home. London was particularly affected by the
outbreak, with 27,000 positive cases at the end of May[19].

We collect and analyze statistics on the operational status
of the MNO network, and our main findings are as follow.
By analyzing cellular network signalling information re-

garding users’ device mobility activity, we observe a decrease
of 50% in mobility (according to different mobility metrics)
in the UK during the lockdown period. We find no correla-
tion between this reduction in mobility and the number of
confirmed COVID-19 cases, showing that only the enforced
government order was effective in significantly reducing
mobility. We observe this reduction is more significant in
densely populated urban areas than in rural areas. We further
note regional differences in how people relax the mobility
restrictions, with an increase in mobility in London andWest

1We indicate the weeks of the year 2020 for the different relevant dates
because our analysis in the following sections refers to them in the different
graphs. Subsequent weeks also refer to the year 2020, but we omit tomention
the year for brevity.
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Yorkshire in weeks 18-19. For London, speci�cally, we ob-
serve that approximately 10% of the residents temporarily
relocated during the lockdown.

We �nd that these mobility changes have immediate im-
plications in tra�c patterns of the cellular network. The
downlink data tra�c volume aggregated for all bearers (in-
cluding conversational voice) decreased for all UK by up to
25% during the lockdown period. This correlates with the re-
duction in mobility we observe country-wide, which results
in people likely relying more on the broadband residential
Internet access to run download intensive applications such
as video streaming. We also note a decrease in the radio cell
load, with a reduction of approximately 15% across the UK
after the stay-at-home order, which further corroborates the
drop in cellular connectivity usage. This e�ect is consistent
with the reported surge in tra�c for residential ISPs. This
decrease rewound the tra�c load on the MNO infrastructure
by one year, to levels similar to those of March 2019.

The total uplink data tra�c volume, on the other hand,
experienced little changes (between -7% and +1,5%) during
lockdown. This is mainly due to the increase of 4G voice
tra�c (i.e., VoLTE) across the UK that peaked at 150% after
lockdown compared to the national medial value before the
pandemic, thus compensating the decrease in data tra�c
in the uplink. At the same time, we observe an increase of
more than 100% in the downlink packet loss error rate for
voice tra�c on week 10 and 11. This was caused by excess
of congestion in the interconnection infrastructureMNOs
use to exchange voice tra�c, whose capacity was exceeded
during the steep surge of voice tra�c. The error rate reverted
its previous levels during the following weeks thanks to rapid
response of the network operations.

Finally, we observe mobility changes have di�erent im-
pact on network usage in geodemographic area clusters. In
densely populated urban areas, we observe a signi�cantly
higher decrease of mobile network usage (i.e., downlink and
uplink tra�c volumes, radio load and active users) than in ru-
ral areas. By looking into the case of London, we observe that
this is likely due to geodemographics of the central districts
(e.g., Eastern-Central(EC) and Western-Central (WC)), which
include many seasonal residents (e.g., tourists), business and
commercial areas.

The rest of the paper is organized as follows. In Section 2
we describe the measurement infrastructure, as well as the
data feeds and the metrics used. In Section 3, we describe
the evolution in mobility observed throughout the lockdown
imposed in March and April. Then, in Section 4, we describe
the changes observed in di�erent parameters representative
of the MNO's network performance in the UK and specif-
ically for the case of London. Next, we present the related
work and conclude the paper.

Figure 1: High-level architecture of the measurement
infrastructure integrated in the cellular network.

2 DATASET
In this section, we describe the measurement infrastructure
we leverage for collecting network data from a large com-
mercial MNO in the UK (with more than 25% market share
in the UK in 2019) . We detail the dataset we built and the
metrics we use to capture the activity of smartphone devices.

2.1 Measurement Infrastructure
The cellular network we study supports 2G, 3G and 4G mo-
bile communication technologies. In Figure 1, we illustrate a
high-level schema of the MNO architecture. Such a network
can be simpli�ed to consist of three main domains: (i) the
cellular device (in our case, the smartphone used as primary
device by end-users), (ii) the Radio Access Network (RAN)
and (iii) the Core Network (CN).

Our passive measurement approach relies on commercial
solutions the MNO integrates within its infrastructure. The
red pins in Figure 1 mark the network elements that we mon-
itor, namely the Mobility Management Entity (MME), the
Message Sequence Chart (MSC), the Serving GPRS Support
Node (SGSN)/Serving Gateway (SGW), and the Cell Sites.
We collect control plane information for both voice and data
tra�c from the total population of devices connected to the
MNO's radio network, as well as Key Performance Indica-
tors (KPI) of cell sites.

Cell Sites.Cell sites (also called cell towers) are the sites
where antennas and equipment of the RAN are placed. Every
cell site hosts one or multiple antennas for one or more
technologies (i.e., 2G, 3G, 4G), and includes multiple cells
and sectors. For every cell site we have detailed information
including location, radio technologies available, number of
cells and radio sectors. We collectKPIfor every radio sectors
(e.g., radio load, average user throughput, tra�c volume)
that we aggregate at postcode level or larger granularity.
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Radio Interfaces.We capture and process logs reporting
on activities on the lu-PS (for 3G) and Gb (for 2G) interfaces,
which carry events related to data packet transmissions and
mobility management. Similarly, for the LTE networks, we
capture the logs at theMME nodes on the S1 interface, re-
porting on mobility management events and bearer manage-
ment, and user plane S1-UP interface for data and voice (over
data) events. We also capture and process logs that report
on events on the lu-CS (for 3G) and A (for 2G) interfaces,
for 2G and 3G voice events. Note that the A interfaces also
carries mobility management information. For the complete
detailed speci�cations, we direct the reader to [1].

2.2 Data Feeds
From our measurement infrastructure, we capture various
data feeds from the mobile network that we describe next.
Note that these feeds are aggregated at postcode level or
larger granularity.

General Signaling Dataset.As described in the previous
section, we capture the activity of the users in the control
plane for the di�erent Radio Access Technologys (RATs) sup-
ported by the cellular provider. Speci�cally, for every RAT,
the signalling dataset we collect includes the (control plane)
signaling messages related to events triggered by the MNO's
subscribers, including Attach, Authentication, Session es-
tablishment, Dedicated bearer establishment and deletion,
Tracking Area Update (TAU), ECM-IDLE mode transition,
Service request, Handover and Detach. Each event we cap-
ture carries the anonymized user ID, Subscriber Identity
Module (SIM) Mobile Country Code (MCC) and Mobile Net-
work Code (MNC), Type Allocation Code (TAC) (the �rst 8
digits of the device IMEI, which are statically allocated to
device vendors), the radio sector ID handling the communi-
cation, timestamp, and event result code (success / failure).
Further, we aggregate this information at postcode level or
larger granularity.

Devices Catalog.We consider a commercial database pro-
vided by Global System for Mobile communications (GSM)
Association (GSMA). This catalog maps the deviceTAC to a
set of device properties such as device manufacturer, brand
and model name, operating system, radio bands supported,
etc. With this information we are able to distinguish between
smartphones (likely used as primary devices by the mobile
users) and Machine-to-Machine (M2M) devices.

Radio Network Topology.To account for potential struc-
tural changes in the radio access network (e.g., new site
deployments), we rely on a daily snapshot of the network
topology. This includes metadata (location and con�gura-
tion) and the status (active/inactive) of each cell tower.

Radio Network Performance.We rely on a commercial so-
lution the MNO deploys to collect the radio network perfor-
mance dataset. This dataset includes variousKPI, including
average cell throughout, average user throughput, average
percentage of resources occupied, average number of users,
total volume of data tra�c uplink/downlink and total volume
of conversational voice tra�c. We collect this data hourly,
and aggregate at postcode level or larger granularity.

UK Administrative and Geo-demographic Datasets.We use
the National Statistics Postcode Lookup (NSPL) dataset for
the UK as at February 2020 to group the postcode areas into
Upper Tier Local Authority (UTLA). The NSPL is produced
by ONS Geography, providing geographic support to the
O�ce for National Statistics (ONS) and geographic services
used by other organisations. Furthermore, we use the latest
available Area Classi�cation for Output Areas (2011 OAC) re-
leased in 2011, which represents a widely used public domain
census-only geodemographic classi�cations in the UK [16].
The 2011 OAC dataset summarizes the social and physical
structure of postcode areas using data from the 2011 UK Cen-
sus, and is updated every 10 years when census is performed
(the next one will be available in 2021).

2.3 Mobility Statistics
Since we are interested in analyzing mobility of people, we
focus on their primary devices. We use the TAC database
to �lter only the devices that are smartphones (i.e., we drop
M2M devices such as smart sensors). We are also able to
separate the native users of the MNO, and drop the inter-
national inbound roamers from further analysis. Using the
signalling data-set described above, we then associate each
(anonymized) user to a radio tower throughout the time they
are connected to the MNO's network. Based on the radio
network topology, we further attach to each radio tower its
geographic location (postal code and approximate coordi-
nates). With this, we then generate aggregated mobility sta-
tistics over six disjoint 4-hour bins of the day (e.g., 04:00AM -
08:00AM, 08:00AM - 12:00PM, 12:00PM - 04:00PM), and also
over the entire day (i.e., 24 hours time window).

For each user, we determine the total duration of time
they spend connected to every cell tower and select the top
20 towers. This allows us to identify all relevant places, as
previous studies have shown than more than three quarters
of people have between 3 to 6 important places, and in gen-
eral no more than 8 [18, 21]. After doing this initial �ltering,
we obtain information regarding roughly 22 million native
users aggregated at postcode level or larger granularity (e.g.,
UTLA or geodemographic cluster).

Mobility Metrics.From the aggregated mobility statistics,
we focus on two metrics: entropy and radius of gyration. The
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combination of both metrics gives a wide view of changes in
mobility: while entropy measures the repeatability of move-
ments, radius of gyration is an indication of the distance
travelled. The two metrics are independent, one could have
a high entropy with a reduced gyration, implying someone
that moves in a reduced physical space almost randomly; or,
on the contrary, have a low entropy with a large value of
gyration, implying someone that moves over a large area but
repeating the trajectories done. These metrics are computed
over a day for each individual and aggregated to obtain an
average value per day. Even if we compute these metrics per
user at cell tower level, we aggregated them at postcode or
larger granularity.

Entropy is a measure of the randomness of the movements
of an individual, and as such, a metric for the predictabil-
ity of movements[28]. From the variety of ways to calcu-
late entropy in mobility [28], we implemented a temporal-
uncorrelated entropy, that characterizes the heterogeneity
of visitation patterns. Formally:

4 = �
#Õ

9=1

¹?¹9º log¹?¹9ºº (1)

with ?¹9º is the fraction of the time spent in thejC� visited
cell tower (being a proxy for the probability for the user to
be in that cell tower).

Radius of gyration is a key characteristic to model travelled
distance [18], and measures how far from the center of mass
the mass is located [2]. It is de�ned as the root mean squared
distance between the set of cell towers and its center of
masses. Formally:
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wherel 9 represents the location of thejC� visited cell tower,
C9 represents the time spent in thejC� visited cell tower and
l2< represents the location of the center of mass of the user's
trajectory, calculated asl2< = 1

#
Í #

9=1fC9l 9} and# the total
number of towers visited.

Home Detection.For our analysis, locating the home post-
code of the end-users is important when capturing their
mobility patterns. Home Detection algorithms are a speci�c
kind of a wider group of algorithms used to identify meaning-
ful places from mobility information. The main idea consists
in using some criteria to de�ne time slots for home, work
and other activities and then use the mobility information
to identify these places [3, 15, 21, 26]. We estimate home
location for each user at postcode granularity. For this, we
use the cell tower to which the user connects more time
during nighttime hours (12:00 PM through 8:00 AM) for at

Figure 2: Comparison between inferred residential
Local Authority District (LAD) population and the ac-
tual LAD population from census data.

least 14 days (not necessarily consecutive) during February
2020. With that �ltering, we were able to determine the home
postal code for approximately 16 million users.

An inherent limitation with our inference is that the es-
timation of the home location distribution is in�uenced by
the market share of the MNO, and how it re�ects the general
population. In order to validate its reliability, we assigned all
subjects to a Local Authority DistrictLAD [13] according to
our home estimations, and compared with values of popula-
tion estimation from the O�ce for National Statistics (see
Figure 2). The result shows a linear relationship(A2 = ”955),
thus validating the representativity of the dataset. The values
obtained are in line with the literature [27].

2.4 Network Performance Statistics
Using the general signalling dataset, we evaluate the average
time the users spend connected to the di�erentRATcells. We
�nd that 4G is the most popularRAT, with users spending
on average 75% of the time per day connected to 4G cells.
Thus, for the network performance statistics, we focus on
4G cells as they have the highest load out of the threeRATs.

Based on the Radio Network Performance data feed, we
generate network performance statistics at the 4G radio cell
level. For each cell, we separate the following hourly perfor-
mance metrics: the Uplink (UL) and the downlink (DL) data
volume (the sum of all data transferred on all cell bearers
corresponding to QoS Class Identi�er (QCI) from 1 to 8 in
each direction,UL and DL), average number of activeDL
users (users with active data transmission in theDL bu�er),
average radio load (as Transmission Time Interval (TTI)
utilization, representing the number of active User Equip-
ments (UEs) the LTE scheduler assigns per TTI), average
userDL throughput (as the average throughput over all users
active in the cell in one hour, considering all bearers corre-
sponding toQCI from 1 to 8), and time (number of seconds)
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with active data per cell. We also extract hourly metrics per
cell speci�cally for conversational voice (separating only the
bearers corresponding toQCIvalue 1), namely: voice tra�c
volume (total tra�c with QCI equal to 1), average number of
simultaneous voice active users, and theUL andDL average
packet loss error rates.

For all the hourly metrics, we further aggregate them per
day and extract the (hourly) median value per cell. This al-
lows to capture one single value per metric per day, enabling
further analysis with the daily mobility metrics For each
of the radio cell, we attach the location metadata informa-
tion from the Radio Network Topology data feed. We further
merge this (at the postcode level) with the UK Administrative
and Geodemographic Datasets to append extra information
such as the geodemographic cluster for each radio cell.

3 MOBILITY
In this section we present how the evolution of the pandemic
and the social distancing measures impacted mobility by an-
alyzing the change of the metrics detailed in Section 2.3. We
capture the mobility metrics of users for 10 weeks (from
week 10 to week 19 of 2020), which includes time before the
SARS-CoV-2 pandemic was declared in the UK on March
11th 2020 (week 11), as well as during the government im-
posed measures to tackle the emergency. The total number
of end-users whose data we aggregate for this study is ap-
proximately 16 million, and, unless otherwise speci�ed, for
all metrics we report for every day the percentage of change
in the average daily value compared to average weekly value
in week 9 (23 February - 1 March 2020).

3.1 National Mobility
We start our analysis by investigating the nation-wide time
series for radius of gyration and the mobility entropy in Fig 3.

The average gyration evolution (Figure 3a) shows the re-
duction in the total area that users cover in their daily rou-
tines in reference to the average value over week 92. We
note that people started implementing social distancing rec-
ommendations even before lockdown was enforced, with a
decrease of 20% in gyration in week 12. With the govern-
ment imposing the nation-wide lockdown in week 13, we
also observe a steep decrease in gyration, with a drop of 50%
towards the end of week 13 compared to the usual value
from week 9. Mobility entropy per user follows a similar
trend (Figure 3b). All metrics show a steep decrease in weeks
13-14, following the "stay-at-home" being enforced. In the
following weeks, we note a slight relaxation, with mobility
marginally increasing. It is worth noticing that, the reduction
of entropy is smaller than the reduction of gyration. This

2Note that during the weekdays of week 9, the gyration is larger while
during the weekend is smaller, yielding the aforementioned average.

(a) Average gyration variation per user per day.

(b) Average entropy variation per user per day.

Figure 3: Percentage of change in the average value per user
for radius of gyration and entropy, compared to their aver-
age value in week 9. Shaded bars correspond to weekends.

Figure 4: Entropy variation (from week 9 to week 18) vs
cumulative number SARS-CoV-2 infections per day. Each
point represents a di�erent day. Colors encode the di�erent
days of the week (yellow shows week-end).

indicates that people, besides moving signi�cantly less, tend
to move close to their home location.

Figure 4 captures the correlation between the average
mobility entropy per user and the nation-wide cumulative
number of lab-con�rmed SARS-CoV-2 cases, as reported
by Public Health England[19]. Each point in the scatterplot
represent a di�erent day; we capture the interval between
February 23rd until May 4th, 2020. We note that the mo-
bility reduction is not impacted by the number of reported
cases, i.e., there is not a correlation between number of cases
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and mobility, but rather mobility is impacted by public an-
nouncement and lockdown measures. The decrease in the
entropy starts only after the pandemic is declared (vertical
red line in Figure 4, coinciding with 1,000 con�rmed cases),
and becomes signi�cant after the lockdown.

Takeaway: Mobility metrics (gyration and entropy) show
a steep decrease in people's mobility in weeks 13-14, fol-
lowing the "stay-at-home" order being enforced. We �nd
no correlation between this reduction in mobility and the
number of con�med COVID-19 cases, showing that only
the enforced government order was e�ective in signi�cantly
reducing mobility. We also notice mobility slightly increases
from week 15 despite the lockdown still being enforced.

3.2 Regional Mobility
We now focus our analysis on �ve di�erent regions in order
to observe potential geo-spatial di�erence in the mobility
pattern changes. We select the regions that are best repre-
sented in our dataset with more than 500,000 users, namely
Inner London (700k users), Outer London (1,1 million users),
Greater Manchester (700k users), West Midland (600k users)
and West Yorkshire (500k users). For each region, we capture
the variation of the two mobility metrics (Figure 5) in ref-
erence to the nation-wide average value of the metric. The
evolution of the metrics shows clearly the impact of the stay-
at-home measures in every region, with a sharp decrease in
weeks 13-14 in the values of all metrics. We note that for
London (both Inner and Outer London), reference values for
gyration are below national average (20% below the aver-
age for each corresponding week� see Figure 5a), while the
reference value for mobility entropy is higher (20% above
the average, see Figure 5b). This shows that within London,
in general, people move more randomly and with less pre-
dictable mobility pattern, but cover smaller areas than the
national average. This analysis also bring to our attention
the regional di�erences in how people relax the mobility re-
strictions, with an increase in mobility in London and West
Yorkshire in weeks 18-19. This is not the case for the regions
of Greater Manchester and West Midlands, where mobility is
consistently low after week 13. Finally, metrics distributions
have little variance in all regions, and all percentiles are close
to the median, following similar trends.

Takeaway: The impact of the lockdown is consistent over
di�erent regions in the UK, showing that people respected
the lockdown, regardless where they live. We do, however,
�nd regional di�erences in how people relax the mobility
restrictions, with an increase in mobility in London and West
Yorkshire in weeks 18-19. This is not the case for the regions
of Greater Manchester and West Midlands, where mobility
is consistently low after week 13.

(a) Gyration.

(b) Mobility entropy.
Figure 5: Variation in the average gyration and entropy per
region, compared to the national average during week 9.

3.3 Geodemographic Mobility
To capture the changes in users' mobility in correlation with
di�erent social and demographic characteristics of their resi-
dence area, we study the variation of mobility metrics across
di�erent geo-spacial clusters as de�ned by the UK O�ce for
National Statistics (ONS)[14]. This consists of eight groups
meant to be illustrative of the characteristics of areas in
terms of their demographic structure, household composi-
tion, housing, socio-economic characteristics and employ-
ment patterns. Each of the eight categories provides the most
generic descriptions of the corresponding population group
in the UK (Table 1).

We break down the mobility metrics variations per week
in each of the above-mentioned area groups (Figure 6). We
�nd that mobility in rural areas is normally higher than the
nation average and people usually cover wider areas in their
daily movement (weeks 9-11 in Figure 6a). Contrariwise, in
highly populated urban areas (such as Cosmopolitans or Eth-
nicity central), the population covers smaller areas (weeks
9-11 in Figure 6a), but the predictability of their mobility
patterns is lower (higher entropy in weeks 9-11 in Figure 6b).
All the di�erent socio-economic groups present the same
signi�cant drop in mobility, with a transition period in week
12 and a steep drop from week 13. Gyration decreases across
all groups by more than 50% of the national average in week
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Table 1: Geodemographic clusters (2011 OAC).

Name De�nition

Rural Residents Rural areas, low density, older and educated population
Cosmopolitans Densely populated urban areas, high ethnic integration, young adults and students

Ethnicity Central Denser central areas of London, non-white ethnic groups, young adults
Multicultural Metropolitans Urban areas in transition between centres and suburbia, high ethnic mix

Urbanites Urban areas mainly in southern England, average ethnic mix, low unemployment
Suburbanites Population above retirement age and parents with school age children, low unemployment

Constrained City Dwellers Densely populated areas, single/divorced population, higher level of unemployment
Hard-pressed Living Urban surroundings (northern England/southern Wales), higher rates of unemployment

(a) Gyration.

(b) Mobility entropy.

Figure 6: Variation in average gyration and entropy per
geodemographic cluster, compared to the national average
in week 9.

9. As it was observed in the previous section, the ethnicity
central group (which would basically correspond to Inner
London), the reduction of gyration is the highest of all the
groups but their reduction in entropy is the smallest, imply-
ing that they have reduced they area of mobility the most,
but within that area their movement is more random. This is
probably related to the high density of commercial services
in central London. Finally, we observe that metrics' distribu-
tion has little variance in all geodemographic clusters.

Takeaway: All users in di�erent geodemographic clus-
ters present the same signi�cant drop in mobility, with a
transition period in week 12 and a steep drop from week 13.

3.4 Temporary Relocation from London
In this section, we measure how many people from London
decided to move elsewhere during (part of) the analyzed time
frame. To evaluate the temporary relocation of Inner London
residents to secondary locations, we generate its mobility
matrix at a county level (see Figure 7). For each Inner London
resident (obtained using the method described in 2.3), we
check the top 20 locations (at county level) that they visit
during each day (cf. Section 2.3). If none of the visited loca-
tions during a day matches their home county (Inner London
in this case) we are able to identify relocations, i.e. people
with residence in London that are elsewhere. Figure 7 shows
the variation in the number of Inner London residents who
are present in the di�erent counties (we capture a di�erent
county per row) per day, compared to the average number
we identi�ed in week 9, before the lockdown.

By looking at the Inner London line we observe a perma-
nent 10% decrease in the number of Inner London residents
who actually are present in their area of residence from week
13 onward (after the lockdown is imposed). Contributions to
the decrease in the number of Inner London residents who
remain in their inferred homes during the lockdown period
may include, for example, students who left campuses in
London after schools closing on the 19th of March, or long-
term tourist leaving Inner London center areas, or London
residents who decided to spend the lockdown in their second
residences. In particular, we observe an increase in the num-
ber of people from London who relocated to the Hampshire
area during most of the duration of the lockdown.

Further, we note that mobility patterns of Inner London
residents changed signi�cantly after the stay-at-home order
was imposed. Speci�cally, before the stay-at-home recom-
mendations, we observe an increase of Londoners spending
the weekend in other counties in the UK. This pattern dis-
appears starting from weeks 11 and 12, concurrent with the
recommendation of social distancing. We capture a large
variation in the number of people travelling from Inner Lon-
don to outside areas such as East Sussex on the 21st-22nd of
March, just prior to the stay-at-home order. We also observe
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